VALUE OF KIEL COMPENSATING SYSTEM IN THE MANTLE FIELD TREATMENT OF MALIGNANT LYMPHOMAS

By
G. EL-WEHIDY*; E. DUEHMKE**
H. SAKR AND I. AWAD

From
Mansoura* and Goettingen** University
Radiotherapy Department 1991
Received for Publication: 13/11/1991

INTRODUCTION
Numerous suggestions have been advanced to recent years aiming at improving the irradiation technique for patients with Hodgkin's disease. However, the only method which was widely used was broad beam irradiation, employing specially prepared irregularly shaped shield. Although desirable additional measures have been worked out theoretically, they have rarely been adopted as daily routine measures, because in most cases they could not be translated into practical reality.

The irradiation time or the "jump orders" to be given by the monitor are determined in irradiation planning in the central beam on a reference plane situated at one-half of the body diameter when using a dorsoventral opposing technique.

The expected transverse and depth distribution of the dosage if no data on the irregularly shaped body surface are incorporated and if tissue inhomogeneities are likewise disregarded, differs from the permissible or desired dosage by up to ± 20 percent.

However, planned dosage variation can be affected only after the dosage has been homogenised in the reference plane. In the present study we are introducing a relevent compensations method which takes into account

MANSOURA MEDICAL JOURNAL
a maximum of data relating to the patient and his disease, in accordance with the present state of irradiation technique.

MATERIAL AND METHODS
The primary requirements before the design and calculations of the compensator, is the measurements and calculation of the scattering from the compensator and its role in the compensator calculation.

The corner stone in the design and calculation of the compensator is separation of the scattering coefficient from the measured or the total absorption coefficient.

The absorption as well as the scattering coefficient were measured for different elements which may be suitable for compensation such as lead, Tungsten, Copper, Tin granules and wax, Aluminum and plexiglass.

Fig. 1 represents these measurements for Tin granules and Wax for field size 10 x 10 cm for energies Co\(^{60}\), 8 MV and 16 MV. Photone, at

Vol. 22, No. 1 & 2 Jan. & April 1992
the stored water equivalent length. After that the data of the compensator is transferred to the cutting machine, which is computer controlled also, and by using the cutting program the compensator could be cut easily using sub-directory compensator data.

Quality assurance is the final but the important step before clinical application of the compensator.

Fig. 2 showing the arrangements of the equipments used for quality assurance measurements of the compensator. We could calculate the dose at the planning the compensator using only 2 measurements one with the patient and compensator and other measurement with the compensator without the patient, the measurements are behind the patient.

RESULTS

The results of the preliminary experiments before the design and calculation of the compensator showed that the scattering from any absorbing material in the way of the beam which represented by the compensator is +12%-40%, it has proved that the geometrical factor plays its effect on the scattering junction through what’s called solid angle, which is an imaginary angle has also relation to the open angle. Fig. 3 represents the relation between the mass absorption coefficient Cu2 in relation to the hight of the absorber from the surface of the phantom for energies Co60, 8 Mv, 16 MV and 42 MV X-ray, for different depth in the phantom. 1-15 cm for Co60, 3-15 cm for 8 MV, 16 MV and 5-20 cm for 42 MV X-ray. These measurements done for different materials used for compensator e.g. Tin granule and wax. Plotting the scattering coefficient against the solid angle represented in Fig. (4,5,6,7). For tin granules and wax for energies Co60, 8, 16, 42 MV, it shows that there is a direct power functional relation between the scattering coefficient and solid angle for quality control.

DISCUSSION

It is highly desirable to treat multiple lymph node chains in continuity with as few fields as possible (Kaplan, 1962, 1966). This is due to the fact
that the dosimetry in the vicinity of junctions between adjacent fields is more complex and difficult. The error may result in the delivery of inadequate dose in the plan of the junction, or hot spots which may produce serious damage in underlying normal tissues in the plan of the junction. For this purpose, contoured lead or lead-bismuth, low melting point alloy (cerrobind) blocks or equivalent volumes of lead shots are used to protect normal tissues such as the lungs and most of the heart. However, major radiotherapy centers treating a large number of patients have generally found it preferable to prepare templates shaped to the contours of mediastinal and hilar lymphadenopathy of individual patients.

The importance of repeated verification films to assure accuracy of mantle fields localization has been stressed by Mondai et al., (1980) who detected 330 localization errors among 902 treatment verification films in 99 patients undergoing mantle field treatment.

Vol. 22, No. 1 & 2 Jan. & April 1992

Certain other refinements in the mantle technique have been introduced in recent years, as protection of cervical spinal cord by shield which extend to cover the dorsal spinal cord in addition. The larynx is shielded during the anterior mantle. The skin of the axillae and the humeral heads are shielded during both anterior and posterior treatments (Kaplan, 1968).

Regarding to the complication arising due to irradiation treatment by mantle field. First and before all is the respiratory system complications (Dexion et al., 1979). Such distorted scarred lung are vulnerable to repeated bouts of pneumonitis often associated with progressive bronchiectasis. Moreover radiation injury to the heart was manifested in a variety of ways.

Actually most of the compensators constructed in the past tried to solve the problem of irregular contour so they compensated only for body contour as those of Ellis, hall and Oliver, 1959, Van de Geffen, 1965, Mok and Boyer, 1984. On the other hand some
tried to compensate for both the irregular contour and the inhomogeneity of different tissues specially for the lungs (Ellis, 1960, Hall and Oliver, 1962; Renner et al., 1983 and Dexon et al., 1979).

For the same purpose we have developed our compensating system (Kiel compensating system "KCS").

In practice the KCS is considered a complementary system which compensates for both the irregular contour and tissue inhomogeneity, moreover, we can control the dose at any point in the field which is called field integrated dose modification (FIDM), as well as we can choose the plan at which it will be compensated.

KCS uses the C.T. slices in the design of the compensator. Each slice of CT in the field is evaluated separately then all the slices evaluated collectively.

From the physical point of view KCS is not so simple as all the geometrical factors and the scattering function are considered. Regarding the problem of scattering function of the compensator in order to reach an accurate value for the attenuation coefficient of the compensating material, however it is not considered before but it is neglected by the authors while our experimental preliminary work has proved that this fraction represents about 12-40% of the measured dose according to the distance of the compensator from the patient surface. We agree with Wiks and Cazbow (1969) who used the measured attenuation coefficient of the compensating material for broad beam and not used the published one which is usually for narrow beam and are quite differ. KCS considered more or less a simple technique for design and construction of the compensator, just we need the computer program, the proper attenuation coefficient and Ct scan in the region to be compensated then the design takes only 15 minutes on the computer which is PC computer, so the design is not time consuming as in most of compensators.
From the literatures the authors made quality assurance on the phantom, that is to say compensation for irregular contour only (Renner et al., 1982).

Actually we consider that the quality assurance during the patient setup is the most accurate one as measurements on the patients avoid any mistake in design or construction or even in the setup of the patients.

SUMMARY AND CONCLUSION

We have presented a method which enables the radiotherapist to achieve homogenization of dosage in relation to an arbitrary reference plane in the body of the patient, within a mantle field.

The irreguarly shaped body surface of the patient and tissue inhomogeneities are taken into account by this method.

In addition, the required compensator can be conceived by the broad beam will receive a dosage different from that applied to the rest of the field.

Beside irradiation of a patient with Hodgkin's disease, the technique described her is suitable for treatment of tumors in the region of the head and neck, and for the breast cancer preserving treatment.

Another advantages of the kiel compensating system is compensation of distortion of dose distribution, caused by surface irregularities and inhomogeneities, by means of C.T. monitored compensation, and limitation of the whole treatment volume by using individually shaped divergent field shields. Further more, its safe and practicable adjustment with definable positioning and few tattooable adjustment points without making field limits render it very practical.

Moreover we have developed a new and unique method for quality assurance with measurements only behind the patients, no measurements on the patients surface as well as within the patients.
Fig. (1):
The mass absorption coefficient σ (cm2/g) in relation to the height of the absorber (H), and different depths in the phantom, for tin granules & wax (SnGrWa), energies Co60 and 16 MV, 18 MV & 42 MV x-ray.
Fig. (2):
Measurements on the phantom and sources of scattering.

Vol. 22, No. 1 & 2 Jan. & April 1992
Fig. (3):
The mass absorption coefficient μ [cm2/g] in relation to the height of the absorber (H) and different depths in the phantom, for copper (Cu), energies Co60 and 8 MV, 16 MV & 42 MV x-ray.
Fig. 14:
The scattering coefficient σ_s [cm2/g] in relation to the solid angle Ω for energy 42 MV X-ray, for both copper (Cu) and tin granules & wax (SnGrWa).
Fig. (5):
The scattering coefficient $\sigma_s [\text{cm}^2/\text{g}]$ in relation to the solid angle Ω for energy 16 MV X ray for both copper (Cu) and tin granules & wax (SnGrWa).
Fig. (6):
The scattering coefficient $\sigma_s \text{[cm}^2\text{/g]}$ in relation to the solid angle Ω for energy 8 MV x-ray for both copper (Cu) and tin granules & wax (SnGrWa).
Fig. (7):
The scattering coefficient σ_s [cm2/g] in relation to the solid angle Ω for energy Co60, for both copper (Cu) and tin granules & wax (SnGrWa).
REFERENCES

الملخص العربي

تم في هذا البحث إجراء عدد من التجارب التعبيرية لخلق المانئ حيث تم التوصل إلى طريقة تجعل من الممكن توصيل جرعة متحاسبة بنسبة تشتت مقبول إلى المستوى المطلوب للعلاج عندئذ. ويتتم في هذه الطريقة استخدام نظام كميات التغذية الذي يتم فيه استخدام الأشعة المقطعية بالكمبيوتر للحقل العامل به مع الأخذ في الاعتبار عدم استمرار السطح الخارجي لجسم المريض وكذلك عدم تجانس الأنواع المختلفة لجميع أنواع الجسم.

عندما يتم استخدام هذا النظام المحكم في الجرعة المطلوبة توصيلها إلى عدة مناطق مختلفة على نفس الحقل، ولقد تم التوصل إلى طريقة للتأكد والاختيار صلاحية الفناء للمريض بعد بدائه من حيث توصيل الجرعة المطلوبة إلى المستوى المطلوب وذلك من خلال قياس فعليه على المريض من خلال الجلسة، ويتبع ذلك عن طريق تقسيم خارجيين للفناء أثناء الجلسة في وجود الفناء المعوض.

أخرى في وجود الفناء المعوض بدون المريض، وعن طريق معايرة تم استباعتها أنفس حساب الجرعة عند المستوى النصفي للمريض والتأكد من صلاحية الفناء المعوض.

الجدير بالذكر أنه يمكن استخدام هذا النظام التعبيري في علاج أورام الرأس والرقبة، كذلك أورام الشد بالإضافة إلى استخدامه في حقل مانئ في علاج أورام الغدد الليفية.

لذلك يمكن تحليل معات ناقص كيلي تعريض كلياتي فيuncia:

1- تعريض أعداد التنازل في الجرعة لوجود اختلاف في استياء السطح الخارجي للجسم، كذلك عدم تجانس أنواع الجسم المختلفة في الرئة والعظام.

2- التمكن من تحقيق الجرعة عند الأنسجة السليمة ذات الخصائصية الجرعة بالنسبة للإشعاع وذلك في نفس الوقت الذي يتم فيه علاج الورم السرطاني.

3- تحديد الحقل الخارجي للمرض العلاج به باستخدام محددات خاصة بكل مريض.

4- سهولة ضبط المريض على الجهاز يومياً باستخدام نفاذ وشمسة على جلد المريض بدون تحديد الحقل على المريض.

Vol. 22, No. 1 & 2 Jan. & April 1992