PRELIMINARY CONSIDERATIONS ON
HAEMOCOAGULATIVE PROBLEMS
FOLLOWING BURNS

By
Al-Moddather M. El-Hadidy*, Ahmed B. El-Deen*,
Omar O. Shuoman*, Loai E. El-bassiony*,
Noha El-Mashad** and Tarek E. Selim**

From
Departments of Plastic Surgery* and Clinical Pathology,**
Faculty of Medicine, Mansoura University

ABSTRACT
Severe infection and inflammation almost invariably lead to hemostatic abnormalities, ranging from insignificant laboratory changes to severe disseminated intravascular coagulation (DIC). The aim was to assess the effect of infection on coagulation parameters in infected burn wound that could predict for the development of DIC in those patients. This study included 60 patients (16 ♂ & 44 ♀), with mean age of 32.9±10.5 years, they were treated in burn surgery unit Mansoura University Hospitals. They were classified into two groups, group I included 38 patients with burn wound infection, and group II included 22 patients with clean burn wound (control group). All cases were subjected to through history taking and clinical examination. For cases with infected wounds, sterile swabs were used for aspiration of deeply seated wound pus for microbiologic examination. Blood samples were collected for prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count and fibrinogen concentration detection. This study revealed females (73.3%) were mostly affected by burn insults than males (26.7%). Out of 60 studied cases 61.7% had 3rd degree of burn and 63.3% developed burn wound infection. The most frequently isolated organisms from infected wound (38) were pseudomonas aeruginosa (31.6%), E.coli (18.4%), proteus (13.2%), coagulase negative Staphylococci (coag. –ve
considered pathogenic factors of this complication(4).

The modification of routine hemocoagulative parameters in burn pathology is a fairly common finding. In addition, to the new regulatory mechanisms of coagulation system, it is now clear that the existence of a positive feed-back between inflammation and coagulation. As a result of marked imbalances in haemostatic equilibrium, there may be sometimes cases of severe hemorrhage which represent a grave clinical problem, possibly even leading to the death of the burn victim(5).

Because the pre-thrombotic state is frequently present in the burn patients, our aim was to assess the effect of infection on coagulation parameters and how could to predict for the development of pre DIC and DIC by using simple screening tests.

MATERIAL AND METHODS

This study was conducted on 60 patients (16 ♂ & 44 ♀) with burned Body surface area (BSA) over 30%, All of them had 2nd or 3rd degree burns. They were selected from burn Surgery Unit, Mansoura University Hospital. They were classified into
two groups, group I included 38 patients with infected burn wound, and group II included 22 patients with clean burn wound.

All patients are subjected to through history taking and clinical examination including classification of burn into either 2nd (partial thickness) or 3rd (full thickness) degree.

Burn wound was classified as wound cellulites which involves the unburned skin at the margin of the burn, or as an invasive wound infection, which is characterized by microbial invasion of viable tissue beneath the burn eschar. Clinical signs suggestive of burn wound infection include the progression of partial-thickness to full-thickness injury, changes in wound color (focal areas of red, brown, or black discoloration, green discoloration of the subcutaneous fat, violaceous discoloration and edema of wound margins and subeschar hemorrhage).

Effective topical antimicrobial therapy and daily wound inspection are necessary to monitor for infection, which may cause conversion of partial-thickness burns to full-thickness injuries.

Management of severe burn wounds is aimed at preventing the bacterial infections and progression of injury by maintaining adequate tissue oxygenation through aggressive volume repletion and early removal of necrotic tissue and the effective topical and systemic antimicrobial chemotherapies followed by wound closure by skin grafts.

Sampling:
Samples were collected on EDTA for CBC and on sodium citrate for hemostatic tests.

Cases with infected burn wound, after cleansing the wound with sterile saline, sterile swabs were used for sample collection for aerobic culture. Syringes were used for aspiration of deeply seated infected wounds that were cultured an aerobically.

Procedures:
1- **Hematological test:**
a) CBC was performed by automated cell counter system (Sysmex Corporation).
b) Hemostatic tests including:
 - Prothrombin time (Diamed AG, 17855, Cressier S, Morat, Switzerland).
 - Activated partial thromboplastin
time (Diamed kit on automated Coagulometer Sysmex-CA 500).

- Fibrinogen level (DADE Behring New York, DE, 19 7/4 USA).

Normal values were established by pooled plasma collected from 15 healthy subjects.

2- Microbiological tests:

Swabs for aerobic culture were inoculated into blood agar plates and inoculated aerobically at 37°C for 24h. Specimens for anaerobic culture were inoculated into scheduler blood agar, inoculated anaerobically inside Mc Intoch Jar with addition of anaerobic package (Oxoid) (Accumed International Ltd., USA). Isolated colonies were identified by gram stained smears, coagulase test for staphylococci and automated Sensititre system for gram negative bacilli.

This system utilizes fluorescence technology to detect the metabolic activity. The system is based upon the reactions activated with 32 biochemical tests prepared and directed into the Sensititre plates.

Aspirated syringe from deeply seated wounds was subjected to culture on Schadele blood agar plates (Oxoid, Unipath Limited, UK) and gram stained smear. Plates were incubated anaerobically in the McIntoch Jar after using anaerobic package (Oxoid), inspected daily and examined for isolated organisms.

RESULTS

General characteristics of the studied 60 patients with burn are shown in table (1): They were (16 ♂ and 44 ♀) with ages ranged from 17-54 years (32.9 ± 10.5). Out of the studied 60 cases, 23 (38.3%) had 2nd degree burn and 37 (61.7%) had 3rd degree burn, and 38 (63.3%) had infected burn wound and 22 (36.7%) cases had clean burn wound.

Isolated organisms from infected wounds (38 cases) are illustrated in table (2). The most frequently isolated organisms were pseudomonas aeruginosa (31.6%), E.coli (18.4%), proteus (13.2%), coag. –ve staph (10.5%), and enterococci (7.8%). This was followed by staphylococcus aureus, klebsiella, and anaerobes (5.3% for each), while the least was candida albicans (2.6%). Table (3) represents a comparison between cases with infected wounds (gpI) to those with clean burn wound (gpII), for different variables. There were insignificant
increased cases with infection in females (63.6%), then males (62.5%). Also, there was insignificantly increased percentage of infection in cases with 3rd degree burn than those with 2nd degree burn (P=0.7).

Impacts of wound infection on the hemostatic parameters are discussed in table (4). There was highly significant increased PT and APTT (P≤0.001 for each) in gpl vs gplI. However, each of fibrinogen level and platelet count was significantly decreased in gpl vs gplI (P≤0.001 for each).

In the patients who have infective complications, we observed a progressive deterioration of the hemocoagulative parameters, especially with regard to thrombocytosis. These modifications of haemostatic equilibrium and consequently the DIC seemed to be connected with the onset of sepsis. This modification was occurred much more with reported high incidence of the pseudomonas infection (12 out of the 38 patients).

Table (1): General characteristic of the studied 60 cases.

<table>
<thead>
<tr>
<th></th>
<th>M (no & %)</th>
<th>16 (26.7%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>F (no & %)</td>
<td>44 (73.3%)</td>
</tr>
<tr>
<td>Age</td>
<td>M ± SD</td>
<td>32.9 ± 10.5</td>
</tr>
<tr>
<td>Degree of burn</td>
<td>2rd</td>
<td>23 (38.3%)</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>37 (61.7%)</td>
</tr>
<tr>
<td>Wound infection</td>
<td>-ve</td>
<td>22 (36.7%)</td>
</tr>
<tr>
<td></td>
<td>+ve</td>
<td>38 (63.3%)</td>
</tr>
</tbody>
</table>
Table (2): Identification of isolated organisms in infected wound (38 cases).

<table>
<thead>
<tr>
<th>Organism</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas</td>
<td>12</td>
<td>31.6</td>
</tr>
<tr>
<td>E.coli</td>
<td>7</td>
<td>18.4</td>
</tr>
<tr>
<td>Proteus</td>
<td>5</td>
<td>13.2</td>
</tr>
<tr>
<td>Staph. -ve</td>
<td>4</td>
<td>10.5</td>
</tr>
<tr>
<td>Enterococci</td>
<td>3</td>
<td>7.8</td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>2</td>
<td>5.3</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>2</td>
<td>5.3</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>2</td>
<td>5.3</td>
</tr>
<tr>
<td>Candida</td>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>100</td>
</tr>
</tbody>
</table>
Table (3): Comparison between infected (gpI) and non infected (gpII) wounds in the studied 60 cases.

<table>
<thead>
<tr>
<th></th>
<th>gpI (63.3%)</th>
<th>gpII (36.7%)</th>
<th>Sig. Test</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>M ± SD</td>
<td>33.1 ± 11.3</td>
<td>32.9 ± 9.0</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.168</td>
</tr>
<tr>
<td>Gender</td>
<td>M</td>
<td>10 (62.5%)</td>
<td>6 (37.5%)</td>
<td>X²</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>28 (63.6%)</td>
<td>16 (36.3%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Burn degree</td>
<td>2nd</td>
<td>14 (36.8%)</td>
<td>9 (40.9%)</td>
<td>X²</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>24 (63.2%)</td>
<td>13 (59.1%)</td>
<td>0.097</td>
</tr>
</tbody>
</table>

Table (4): Effect of wound infection on hemostatic parameters of the gpI vs gpII.

<table>
<thead>
<tr>
<th></th>
<th>gpI (63.3%)</th>
<th>gpII (36.7%)</th>
<th>Sig. Test</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>M ± SD</td>
<td>16.3 ± 2.3</td>
<td>12.5 ± 0.6</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>APTT</td>
<td>M ± SD</td>
<td>42.2 ± 7.1</td>
<td>30.1 ± 2.0</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>M ± SD</td>
<td>16.8 ± 72.9</td>
<td>606 ± 215.5</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>Platelet</td>
<td>M ± SD</td>
<td>107.5 ± 27.2</td>
<td>228.0 ± 55</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.3</td>
</tr>
</tbody>
</table>
DISCUSSION

The burn injury causes mechanical disruption to the skin, which allows environmental microbes to invade the deeper tissues. The usual skin barrier to microbes is replaced by a moist, protein-rich, avascular eschar that fosters microbial growth. The avascularity of the eschar prevents migration of immune cells and restricts the distribution of systemically administered antibiotics. Furthermore, toxic intermediaries released by the eschar can impede the immune response. The burn wound surface is sterile immediately following injury; however, it is repopulated quickly with gram-positive organisms from hair follicles, skin appendage, and the environment during the first 48 hours. More virulent gram-negative organisms replace the gram-positive organisms after 5-7 days. Gram negative organisms have greater motility, possess many antibiotic resistance mechanisms, and have the ability to secrete collagnases, proteases, lipases, and elastases, enabling them to proliferate and penetrate into the subeschar space.

Endotoxin can also cause the release of tissue-factor by endothelial cells leading to fibrin and activation of the coagulation cascade depletes the patient's ability to make clot resulting in hemostatic abnormalities, ranging from insignificant laboratory changes to severe disseminated intravascular coagulation (DIC). On the other hand, increased production of plasminogen-activator inhibitor-I from vascular endothelium suppresses the fibrinolytic activity. These procoagulant changes are further accelerated by decreased circulating levels of antithrombin III, protein C, and protein S.

It was mentioned by Mousa and Revathi et al. that organisms most frequently isolated from burn are pseudomonas aeruginosa, enterobacter cloacae, klebsiella pneumoniae, aspergillus species, and candida albicans. Pseudomonas aeruginosa, which is the most important and dangerous bacterium in burn sepsis.

In our study, the frequently isolated organisms were pseudomonas aeruginosa (31.6%), E.coli (18.4%), proteus (13.2%), staphylococci coagulase negative (10.5%), while the least were anaerobes (5.3%) and...
candida albicans (2.6%). Among the modification of coagulation parameters that occurred in infected burnt patients (38), 12 patients was infected by pseudomonas aeruginosa. Pseudomonas aeruginosa are the agents most likely to cause infections in burn that would accompanied by activation of coagulation and fibrinolysis.(13)

Recent advances in understanding the pathogenesis of sepsis declared that bacterial products such as endotoxins, in gram –ve bacteria, or cell wall fragments, in gram +ve bacteria, are able to trigger the inflammatory and coagulation pathway directly or indirectly through inflammatory cells to produce inflammatory cytokines.(14)

Corral et al.(15) suggested that activation of coagulation by endotoxins is severe in sepsis. On the other hand, Arora et al.(16) in a similar study, found that there was no significant difference on coagulation parameters in gram positive and gram negative infection.

In this work, on comparing burn cases with infected wounds (group I) to those without infection (group II) as regard the changes in hemostatic parameters, there was highly significant increased both PT & APTT in infected cases (P≤0.001 for each). While there was significantly decreased fibrinogen concentration and platelet count in infected than those with clean burn wound (P≤0.001 for each) however in a study by Arora et al. they found that platelet count was not significantly decreased, while fibrin/fibrinogen degradation products were significantly higher in cases with sepsis. In a study of association between sepsis and the changes in hemostatic molecular markers by Ibâ et al.(17), they mentioned that low fibrinogen levels though specific for DIC were present in only low percent of their studied cases and were normal in some cases with septicemia. They added that combination of APTT>38 sec., with PT>15 sec. and low platelet count were good screening tests for developing DIC. In cases of severe sepsis in burn injury, the sequelae of the imbalance between inflammatory mediators and their antagonists can lead to endothelial injury, and dynamic alterations in the coagulation and fibrinolysis, and so-called DIC. The changes in blood coagulation, fibrinolysis, they help to cast light on the various phenomena that occur in hae-mostasis, regarding both coagulation
and fibrinolysis; any modification of these parameters could be a warning signal of a condition which from an initial subclinical level might evolve towards a more serious condition like DIC.

In conclusion, the purpose of our study is to identify, if possible, among the data that will accumulate from a routine use of these tests a correlation with the survival of burn patients. We hope that these procedures will provide us with information on the basis of which it will be possible to draw up a protocol of clinical and laboratory control enabling us to formulate predictions regarding hemocoagulative conditions, i.e. to foresee the turning point towards conditions of hypercoagulation when there is still time to initiate correct therapy including early excision of necrotic tissue and skin grafting that might be coincide with study by Still and Law(18) to decrease the frequency of burn wound sepsis and consequently DIC.

REFERENCES

2- Pruitt BA Jr, McManus AT, Kim
Vol. 36, No. 3 & 4 July., & Oct, 2005

3- Purdue GF and Hunt LL (1988) :

4- Velasco AA, Blasa DCT, Bajo GG, Gacia CV, et al. (1993) :

5- Angelo DA, Valle DP, Giudici D, et al. (2004) :

6- Magliacani G, Stella M, Calcagni (1994) :

7- Altoparlak U, Erol S, Akcay MN (2004) :
The time-related changes of antimicrobial re-
sistance patterns and pre-
dominant bacterial profiles
of burn wounds and body
flora of burned patients.
Burns; 30(7): 660-4.

8- Levi M, Ten Cate H, van der Poll
T and Deventer SJ(1994) : Pathogenesis of disseminated
intravascular coagulation in septicemia. JAMA. 25;
270 (8): 975-9.

9- Levi M, Keller TT, van Gorp E
and Ten Cate H (2003) : Infection and inflammation
and the coagulation system. Cardiovasc. Res.. 15; 60

10- Mousa HA (1997) : Aerobic, ana-
aerobic and fungal burn
wound infections. J Hosp In-

11- Revathi G, Puri J, Jain BK
(1998) : Bacteriology of
burns. Burns Jun; 24(4):
347-9.

12- Abul-Hassan H.S., El-Tahan k
Massoud B., Gomaa R.
(1990) : Bacterophase ther-
apy of pseudomonas burn
wound sepsise annlas of
MBC -vol. 3 - n' 4 – Decem-
ber.(Article cn midline).

13- Hudecek J, Pacekova M, Chu-
dej J and Kubisz P (2004) :
Infection and hemostasis.
Vnitr Lek.; Jun; 50(6): 453-
61.

14- Edwin SV, Theo JC, Johan K, et
al. (2003) : Receptors, medi-
ators and mechanisms in-
volved in bacterial sepsis
and septic shock. Clinical
Microbiology Reviews, vol

15- Corral J, Yelamas J, Hernan-
dez-Espinosa D, et al.
(2005) : Role of lipopolysac-
charide and cecal ligation
and puncture on blood co-
agulation and inflammation
in sensitive and resistant
mice models. Am J Pathol.;
Apr.; 166 (4): 1089-98.

16- Arora MM, Mishra KB, Nair V, et
al.(2002) : Diagnosing dis-
seminated intravascular co-
agulation in acute infection:
can we do without FDP & D-
dimer. Medical Journal

MANSOURA MEDICAL JOURNAL

الإعتبارات المبدئية لمشاكل التجلط الناشئة عن الحروق

د. الدكتور محمد الحديدي، د. أحمد بهاء الدين مصطفى
د. عمر شومان، د. لؤى السيد البسيوني
د. نا بدر الدين المشد، د. طارق السيد سليم
وحدة جراحة التجميل وقسم الباثولوجيا الالتهابية
كلية الطب - جامعة المنصورة

من المعروف أن العدوى الميكروبية بالإحتمالات يصاحبها تغيرات في أرقام الدم تتراوح بين تغيرات
معمليّة بسبب الانتظار جلّطات الأوعية الدموية.

يهدف البحث إلى دراسة تأثير العدوى الميكروبية على أرقام الدم والذي قد يساعد في توقع حدوث
جلّطات الأوعية الدموية.

في البحث، 60 مريضاً (16 ذكور و44 أنثى) تم اختبارهم من وحدة جراحة التجميل والحروق، تم أخذ
التاريخ المرضي والكشف الإكلينيكي وقسم المرضى إلى مجموعتين، المجموعة الأولى تشمل 38 من المرضى
المصابين بحروق وأặc واحدة تشمل 22 مصاباً بحروق دون تلوث.

أخذت عينات الدم لعمل صور الدم واختبارات زمن البروتومين وزمرن البروترومبلاستيني الجزئي النشط
وعن تمييز نسبة الفيبرينوجين في الدم. كما أخذت من المجموعة الأولى مسحات لعمل الم زار الميكروبيولوجي.

أسفر البحث عن أن معظم الميكروبات التي تم عزلها من حالات الحروق الملوثة من أنواع سيدوموس.
وعند مقارنة الحالات الصناعية بالحروق الاصطناعية، كانت هناك زيادة في نسب الشريكة الحروق.
وتنتهى هذه الباحثات عن مجموعة التغييرات المكونة من زمن البروتومين
والبروترومبلاستيني الجزئي النشط عدد الصناعات الدموية ونسبة الفيبرينوجين في الدم. يستخلص من هذا البحث أن;
ينتين في الدم عدد من الاختبارات
البسيطة النهائية التي يمكن الاستعانة بها كاختبارات سهلة يمكن من توقع حدوث جلّطات الأوعية
dموية في حالات الحروق الملوثة.

MANSOURA MEDICAL JOURNAL