Potential Neuroprotective Effect of Clopidogrel on Aluminum Chloride-Induced Alzheimer Disease in Rats.

Noura El Adle Khalaf a, Rehab Hamdy Ashour a, Mona Younis Youssef b, Youssef Mohammed Mosaad c, Mohamed-Hesham Daba a, Farida Hanem Mohamed El Banna a

Abstract

Background and aim: Alzheimer’s disease (AD) is a common progressive disease characterized by neurodegeneration. Multiple molecular mechanisms such as amyloid β (Aβ) formation, tau protein hyperphosphorylation, reduced cholinergic neurotransmission, oxidative stress, and neuroinflammation are involved in the disease pathophysiology. The purpose of this study was to assess potential neuroprotective effect of clopidogrel in AD model induced by aluminum chloride (AlCl3) in rats.

Methods: Forty adult male Sprague-Dawley rats were haphazardly separated into four groups of ten rats each: Control, AlCl3 (100 mg/kg orally), AlCl3 + Memantine (10 mg/kg orally), and AlCl3 + Clopidogrel groups (20 mg/kg orally). AlCl3 and drugs were administrated once every day for 42 days. The spatial learning and memory were evaluated using Morris Water Maze (MWM) test. After euthanization, hippocampal acetylcholinesterase (AChE) activity, tumor necrosis factor alpha (TNF-α), and interleukin-1beta (IL-1β) concentrations were biochemically assessed in all groups. Moreover, amyloid precursor protein (APP) mRNA gene expression was analyzed in the hippocampus of all groups with Real-time quantitative polymerase chain reaction (qPCR). Histopathology for amyloid plaques was done in all groups’ hippocampus using hematoxylin and eosin and Congo stain.

Results: AlCl3 and clopidogrel co-treatment significantly ameliorated the cognitive deficits induced by AlCl3 in rats. Moreover, AlCl3 and clopidogrel co-treatment significantly reduced AChE activity, TNF-α and IL-1β concentrations, and APP mRNA gene expression in the rat hippocampi compared to AlCl3-treated rats. AlCl3 and clopidogrel co-treatment significantly reduced TNF-α and IL-1β concentrations in the rat hippocampi compared to AlCl3 and memantine co-treated rats. In addition, AlCl3 and clopidogrel co-treatment alleviated amyloid plaque deposition in the rat hippocampal tissues stained with hematoxylin and eosin and Congo stains compared to AlCl3-treated rats.

Conclusion: These results showed that clopidogrel could improve cognitive deficits triggered by AlCl3 in rats. The neuronal protection influence of clopidogrel in AlCl3-triggered AD might be mediated through its anti-inflammatory effect as demonstrated by its ability to decrease hippocampal TNF-α and IL-1β concentrations. It might also be mediated through its lowering effect on AChE activity and/or decreasing mRNA gene expression of APP gene in the hippocampus.

Keywords: Alzheimer’s disease, Neuroinflammation, Clopidogrel, Aluminum chloride
Introduction

Alzheimer’s disease (AD) is a rapidly deteriorated disease prevalent all over the world, characterized by neurodegeneration, but yet with no effective cure (Chen et al, 2018). The pathogenesis of this disease is still unclear. Many hypotheses have been proposed for AD, involving amyloid β (Aβ) deposition, tau protein hyperphosphorylation, cholinergic nerve cell destruction, neuroinflammation, oxidative stress, etc. (Du et al, 2018). The pathological hallmarks observed in AD brain include extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Clinically, AD patients suffer from learning and memory deficits, and neuropsychiatric and behavior changes (Chen et al, 2018).

Cholinesterase inhibitors donepezil, galantamine and rivastigmine and the N-methyl-D-aspartate (NMDA) receptor blocker memantine are the only food and drug administration (FDA) approved AD treatments (Kim et al, 2017). These approved drugs provide only symptomatic relief and haven’t shown to prevent or delay the progression of disease (Deardorff & Grossberg, 2016). Therefore, seeking effective disease-modifying therapeutics with multiple targets is highly desirable (Chen et al, 2018).

The current study aimed to evaluate potential neuronal protection effect of clopidogrel in aluminum chloride (AlCl₃)-triggered AD in rats and compare it with the effect of memantine. It also aimed to understand its possible mechanism(s) for neuroprotection.

Material and Methods

Chemicals and drugs

Aluminum chloride anhydrous (molecular weight: 133.332 g/mol) was purchased from El-Gomhouria Chemical Company, Mansoura, Egypt. Memantine hydrochloride was used in the form of Ebixa tablets (manufactured by Lundbeck company, Denmark). Clopidogrel bisulphate was used in the form of Plavix tablets (manufactured by Sanofi- Aventes company, France).

Experimental animals

Adult male Sprague-Dawley rats were utilized at the study beginning with a weight of 200-250 g. They were obtained from the Medical Experimental Research Center (MERC), Mansoura Faculty of Medicine. For seven days before the study, the animals were adapted to ordinary laboratory circumstances; adjusted temperature (23 ± 2°C), humidity (50 ± 5%) and 12 hours cyclic exposure to light and dark. The animals were housed in plastic cages lined with sawdust that was renewed daily and were freely fed on food and water ad libitum. These entire manipulations were performed in the daylight between 09.00 a.m. and 5.00 p.m.

Animal care and ethical approval

Laboratory animal handling was done according to the “Guide for the Care and Use of Laboratory Animals” organized by the institute of Laboratory Animal Research and issued by the National Research Council, USA, 2011 (Albus, 2012). The study design and protocol were reviewed and accepted by Mansoura Faculty of Medicine, Institutional Research Board (IRB) under the code of MD15.08.06.

Experimental design

Forty adult male Sprague-Dawley rats were haphazardly separated into four groups (ten rats each): Control group: administrated the vehicle for AlCl₃ (distilled water) daily orally for 42 days. AlCl₃ group: received AlCl₃, 100 mg/kg daily orally for 42 days. AlCl₃ + Memantine group: received AlCl₃, 100 mg/kg and memantine hydrochloride, 10 mg/kg (Ahmed et al, 2014) daily orally for 42 days. AlCl₃ + Clopidogrel group: administrated AlCl₃, 100 mg/kg and and clopidogrel bisulphate, 20 mg/kg (Tu et al, 2008) daily orally for 42 days.
The drugs were introduced by mouth 1 h after AlCl3 treatment and continued for 42 days (6 weeks) (Kumar et al, 2009). The AlCl3 dose used was chosen depending on an earlier study (Thippeswamy et al., 2013) and a pilot study in our laboratory that showed AlCl3 in a dosage of 100 mg/kg was associated with the most obvious pathological characteristics of AD especially amyloid plaques. The mortality rate with AlCl3 (100 mg/kg) was about 20%. Other groups showed mortality rates of 0-10%.

Evaluation of learning and memory by Morris Water Maze (MWM) test

Morris Water Maze is formed of a big circular pool (its diameter is 150 cm, its height is 45 cm) filled with water at 28 ± 1°C to 30 cm depth and divided into four equivalent quadrants (N, S, E, and W) by two strands fixed at right angles. The pool was positioned in an illumined test chamber. In any pool quadrant, a circular platform (its diameter is 4.5 cm) was positioned, 1 cm above the water level by 1 cm during the acquisition stage. This platform was positioned below the water level by 1 cm during the retention stage. The platform location was constant in the same quadrant during evaluation of both stages (Kumar et al, 2011). The water was made opaque during the retention phase by adding a nontoxic dye e.g. starch. During the test the rats were trained to avoid swimming by jumping onto the platform and by time the rats seemingly learn the spatial platform site from any beginning site at the pool circumference (Prashar et al, 2014).

a) Maze acquisition phase (training)

On day 20, animals were trained four times with 5 minutes interval in between. During the four training sessions, dissimilar beginning sites (N, S, E, and W) were used. A trial was initiated by introducing the animal into the maze fronting the pool wall and the delay to discover and jump onto the platform was noted to a 90 second maximum. If the rat did not jump onto the platform within 90 seconds, it was carried and directed to the platform and was kept there for 20 seconds. The initial acquisition latency (IAL) was described as the time consumed by the animal to jump on the platform (Ramachandran et al, 2013; Thippeswamy et al, 2013).

b) Maze retention phase (testing for retention of learned task)

After the four training sessions, the time consumed to discover and reach the hidden platform (retention latency “RL”) was recorded and evaluated on day 21 (1st RL) and day 42 (2nd RL). The alteration in RL from day 21 to day 42 was utilized to assess the acquired skill or memory (Ramachandran et al, 2013; Thippeswamy et al, 2013).

Brain Tissue Sampling and Preparation

When the study was finished, rats were deprived from food and water in the whole night, then euthanized by decapitation following intraperitoneal thiopental sodium injection (40 mg/kg) (IACUC Guidelines: Anesthesia. The university of Iowa, Office of Animal Resources, Institutional Animal Care and Use Committee, 2017). The skull was opened with cautious and each rat’s entire brain was quickly taken out and cut mid-sagittally into two hemispheres. Hippocampus was micro-separated out from each hemisphere according to procedure documented previously (Carleton et al, 1980).

Hippocampal halves from rats of each group were used as follows:

They were further equally divided to be processed either: 1) cleaned with ice-cold saline to eliminate blood, quickly kept in eppendorf tubes, embedded in liquid nitrogen and stored at -80°C till its usage for Real-time quantitative polymerase chain reaction (qPCR) (Balgoon et al, 2015) or 2) cleaned with isotonic saline, desiccated on filter
paper, and weighed then immediately homogenized in frozen phosphate-buffered saline at pH 7.4. Centrifugation of the homogenate was done at 2000-3000 rpm for 20 min at 4°C and the supernatant was separated and stored at -20°C until its usage for biochemical estimations.

Other hippocampal halves were kept in 10% neutral buffered formalin to be fixed and then examined histopathologically by hematoxylin and eosin and Congo stains

(Balgoon et al, 2015).

Biochemical Estimations

Rat hippocampal tissue homogenate was used to evaluate acetyl cholinesterase (AChE) activity by AChE Assay Kit (Colorimetric) (Abcam Co., UK, Cata. No.: ab138871) according to their manufacturer's instructions. In addition, tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β) concentrations were estimated in rat hippocampal tissue homogenate using rat enzyme linked immunosorbent assay (ELISA) kits (Bioneovan Co. Ltd., China, Catalog. No. In-Ra1371 for TNF-α, Catalog. No.: In-Ra0668 for IL-1β) according to their manufacturer's instructions.

Real-time quantitative reverse transcription-polymerase chain reaction (Real-time qRT-PCR) for amyloid precursor protein (APP) gene expression determination in rat hippocampus

Entire RNA was taken out from rat hippocampal tissue samples in all groups by RNeasy Mini kit (Qiagen, Valencia, CA, USA) according to manufacturer's instruction. NanoDrop® ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA) was used to detect quantity and purity of every RNA sample using 260 and 260/280 nm ratio respectively. RNA sample purity was detected and it ranged from 1.8 to 2.1 indicating its high quality. RNA was reverse-transcribed into complementary DNA (cDNA) using Arktik Thermal Cycler (Thermo Fisher Scientific Inc., MA, USA) and quantified using infra-red specific primer by Real-time PCR System (Applied Biosystems, Foster City, CA, USA). The primers were manufactured by Primers Biosearch technologies (Primers Biosearch technologies, CA, USA) and the specific gene sequences were obtained from Pubmed (Entrez Gene). The primers utilized in this experiment included β-actin (the control gene) F: 5’- CCCATCTATGAGGTTACGC-3’; β-actin R: 5’-TTTAATGTCACGACATTC-3’ (Zhou et al, 2009); APP (the studied gene) F: 5’-TGGTTGACAAACATCAAAGG3’; APP R: 5’-GCACCTTGAAGATTCCAC-3’ (Ying-Cai et al, 2007). The thermal cycling conditions were adjusted as follow: 15 min at 95 °C for DNA polymerase stimulation and subsequently 40 cycles of 15 seconds at 95 °C, 20 seconds at 60 °C and 20 seconds at 72 °C.

mRNA expression's relative quantification (RQ) was detected with the 2-ΔΔCt method (Schmittgen & Livak, 2008). The data were presented as target mRNA relative quantity, normalized respect to β-actin mRNA and relative to a calibrator sample. Normal control samples were used as calibrators. Where: ΔCt = (Ct of target gene – Ct of reference gene); ΔΔCt = (ΔCt of sample – ΔCt of control). Ct is defined as the fractional cycle number at which the fluorescence passes the fixed threshold.

Histopathological examination

Rat brain hippocampus specimens were kept in 10% formalin for 24 hours to be fixed and subsequently cleaned with tap water. Sequential alcohol dilutions were used for desiccation. Specimens were cleaned in xylene immersed in paraffin in hot air oven at 56°C for 24 hours. Paraffin bees wax tissue block preparation was performed to be divided by microtome at 4 microns thickness. The resulting tissue slices were put on glass slides, cleared from paraffin and stained with hematoxylin and eosin stain for histopatho-
logical examination under light microscopy (Ali et al., 2016). Congo red staining was done consistent with the manufacture’s strategy. The hippocampal slice was put a slide and desiccated in air. The slice was embedded first in 80% ethanol containing 4% sodium chloride for 1 hours, then embedded in 80% ethanol containing 0.2% Congo red at room temperature for 1 hours. The sections were cover slipped and examined under light microscope (Guo et al., 2015).

Statistical Analysis

The results were statistically analyzed using Statistical Package for Social Science (SPSS) program, version 23.0, for windows 10. Charts were done using SPSS and/or Excel program (Microsoft Excel, version 14.0.4734.1000, 2010). The parametric results were expressed as Mean ± SD. One-way analysis of variance (ANOVA) followed by Tukey’s post hoc multiple comparisons were used for statistical analysis between groups. Repeated measures ANOVA followed by post-hoc Bonferroni test were used for analyzing MWM data (IAL, 1st RL, and 2nd RL) within groups. P value < 0.05 indicate statistical significance.

Results:

Effect of memantine or clopidogrel on memory function in spatial navigation task of Morris Water Maze (MWM) test in aluminum chloride (AlCl3)-treated rats

In the spatial navigation task of MWM test, control rats were educated to directly swim to the visible platform rapidly on the day 20. AlCl3-treated rats demonstrated a significant rise in mean IAL to jump onto the visible platform when compared to control rats on the day 20 (p < 0.001). On the other hand, concomitant administration of memantine or clopidogrel with AlCl3 significantly reduced the IAL to jump onto the visible platform when compared to AlCl3-treated rats on the day 20 (p < 0.001), Figure 1.

After the four training sessions, the visible platform was hidden. AlCl3-treated rats demonstrated a significant increase in mean 1st and 2nd RLs when compared to control rats on the days 21 and 42, respectively. (p < 0.001). However, concomitant administration of memantine or clopidogrel with AlCl3 demonstrated a significant decrease in the 1st and 2nd RLs when compared to AlCl3-treated rats on the days 21 and 42, respectively (p < 0.001), Figure 1.

Effect of memantine or clopidogrel on acetylcholinesterase (AChE) activity, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations in hippocampus of aluminum chloride (AlCl3)-treated rats

Continuous AlCl3 administration to rats demonstrated a significant rise in rat hippocampal AChE activity when compared to control rats (p <0.001). However, concomitant administration of memantine or clopidogrel with AlCl3 significantly attenuated the rise in AChE activity when compared to AlCl3-treated rats (p < 0.001). Rat hippocampal AChE activity in AlCl3 + memantine group or AlCl3 + clopidogrel was still significantly raised when compared to control group (p < 0.001); but not significantly changed when compared to each other (p = 0.96), Table 1.

Continuous AlCl3 administration to rats demonstrated a significant rise in rat hippocampal TNF-α and IL-1β concentrations when compared to control rats (p <0.001). However, concomitant administration of memantine or clopidogrel with AlCl3 significantly decreased rat hippocampal TNF-α and IL-1β concentrations when compared to the AlCl3-treated rats (p < 0.001). In addition, AlCl3 and clopidogrel co-treatment significantly decreased rat hippocampal TNF-α and IL-1β concentrations when compared to AlCl3 and memantine co-treatment (p < 0.01). Rat hippocampal TNF-α and IL-1β concentrations in AlCl3 + memantine group were still significantly raised when compared to control group (p < 0.001); while,
TNF-α and IL-1α concentrations in AlCl₃ + clopidogrel group were not significantly raised when compared to control group (p = 0.75 and p = 0.07 respectively), Table 1.

Effect of memantine or clopidogrel on relative quantification (RQ) of amyloid precursor protein (APP) mRNA gene expression in hippocampus of aluminum chloride (AlCl₃)-treated rats

Continuous AlCl₃ administration to rats demonstrated a significant rise in the rat hippocampal APP gene expression when compared to control rats (p <0.001). However, concomitant administration of memantine or clopidogrel with AlCl₃ significantly decreased rat hippocampal APP gene expression when compared to the AlCl₃-treated rats (p < 0.001). The rat hippocampal APP gene expressions of AlCl₃ + memantine group or AlCl₃ + clopidogrel group are still significantly raised when compared to control group (p < 0.001) but not significantly different when compared to each other, Table 1.

Effect of memantine or clopidogrel on histopathological examination in hippocampus of aluminum chloride (AlCl₃)-treated rats

Examination of the hippocampus of AlCl₃ group by hematoxylin and eosin revealed areas of brain cell apoptosis (Figure 4). Congo red-stained slides examined under light microscopy revealed orange brown plaque-like structures (Figure 5 A) in addition to orange stained thickened wall of the cerebral blood vessels (Figure 5 B) raising the possibility of amyloid deposition. When the Congo-red stained slides examined under the polarized light, it showed birefringence both in hippocampal brain tissue (Figure 5 C) as well as the wall of the hippocampal blood vessels (Figure 5 D) confirming the presence of amyloid plaques.

Examination of the hippocampi of AlCl₃+ Memantine group by hematoxylin and eosin revealed more or less normal hippocampal brain tissue with normal brain cellularity and normal thickness of the hippocampal blood vessels when compared to AlCl₃ group (Figure 6 A, B). No amyloid plaques were detected neither in hematoxylin and eosin-stained slides (Figure 6 A, B) nor in Congo red-stained slides examined both under light microscopy and polarized light (Figure 7 A, B). Histopathological results similar to AlCl₃+Memantine group were demonstrated on examination of the hippocampi of AlCl₃+Clopidogrel group with no amyloid plaques detected neither in hematoxylin and eosin-stained slides (Figure 8 A, B) nor in Congo red-stained slides when examined both under light microscopy and polarized light (Figure 9 A, B).
Table 1: Effect of memantine (10 mg/kg) or clopidogrel (20 mg/kg) on AChE activity, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations, and relative quantification (RQ) of amyloid precursor protein (APP) mRNA gene expression in aluminum chloride (AlCl3)-treated rats (100 mg/kg).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Acetylcholinesterase (AChE) activity (U/mg tissue)</th>
<th>Tumor necrosis factor-α (TNF-α) concentration (pg/mg tissue)</th>
<th>Interleukin-1β (IL-1β) concentration (pg/mg tissue)</th>
<th>Relative quantification (RQ) of amyloid precursor protein (APP) gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>0.15±0.035</td>
<td>114.8±6.91</td>
<td>30.34±3.14</td>
<td>1.01±0.11</td>
</tr>
<tr>
<td>AlCl3 group</td>
<td>0.34±0.037</td>
<td>#</td>
<td>67.99±5.02</td>
<td>2.5±0.17</td>
</tr>
<tr>
<td>AlCl3+Memantine group</td>
<td>0.25±0.032</td>
<td># $</td>
<td>50.54±7.49</td>
<td># $</td>
</tr>
<tr>
<td>AlCl3+Clopidogrel group</td>
<td>0.24±0.033</td>
<td>119.8±6.25</td>
<td>38.20±6.67</td>
<td>1.58±0.15</td>
</tr>
<tr>
<td>p value of ANOVA</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data were expressed as means ± SD (n=8) and were tested by one-way ANOVA followed up by Tukey post hoc test. p value < 0.05 is considered to indicate statistical significance.

#: significance relative to Control group
$: significance relative to AlCl3 group
&: significance relative to AlCl3 + Memantine group
Figure (1): Effect of memantine (10 mg/kg) or clopidogrel (20 mg/kg) on memory function in Morris Water Maze (MWM) test in aluminum chloride (AlCl3)-treated rats (100 mg/kg).

Figure (2): Hippocampus of control group stained with hematoxylin and eosin.

Control group’s hematoxylin and eosin-stained section (x100) revealed normal hippocampal brain tissue with no detected microscopic abnormalities.
Figure 3: Hippocampus of control group stained with Congo red.

Control group’s Congo red-stained sections (x100) both under light microscopy (A) and polarized light (B) revealed unremarkable pathological changes.

Figure 4: Hippocampus of AlCl3 group stained with hematoxylin and eosin.

AlCl3 group’s hematoxylin and eosin-stained section (x100) revealed multiple apoptotic bodies (tip of black arrows).
Potential Neuroprotective Effect of Clopidogrel Noura El Adle et al.

Figure 5: Hippocampus of AlCl₃ group stained with Congo red.

AlCl₃ group’s Congo red-stained sections (x200) examined under light microscopy revealed (A) orange brown plaque-like structures (thin black arrows) within the hippocampal brain tissue; (B) orange stained thickened wall of the hippocampal blood vessels (thick black arrows). AlCl₃ group’s Congo red-stained sections (x200) examined under the polarized light showed (C) birefringence (white arrows) in hippocampal brain tissue and (D) the wall of the hippocampal blood vessels confirming the presence of amyloid plaques.
Figure 6: Hippocampus of AlCl3+Memantine group stained with hematoxylin and eosin.
AlCl3+Memantine group’s hematoxylin and eosin-stained sections (x200) revealed (A) more or less normal hippocampal brain tissue with normal cellularity and (B) normal thickness of the blood vessels (white arrows). No amyloid plaques were detected.

Figure 7: Hippocampus of AlCl3+Memantine group stained with Congo red.
AlCl3+Memantine group’s Congo red-stained sections (x200) revealed absent amyloid plaques when examined (A) under light microscopy and (B) polarized light.
Figure 8: Hippocampus of AlCl3+Clopidogrel group stained with hematoxylin and eosin.
AlCl3+Clopidogrel group’s hematoxylin and eosin-stained sections (A, x100 and B, x200) revealed (A) more or less normal hippocampal brain tissue with normal cellularity and (B) normal thickness of the blood vessels (black arrows). No amyloid plaques were detected.

Figure 9: Hippocampus of AlCl3+Clopidogrel group stained with Congo red.
AlCl3+Clopidogrel group’s Congo red-stained slides (x200) revealed absent amyloid plaques when examined (A) under light microscopy and (B) polarized light.
Discussion

The current study’s results demonstrated that continuous AlCl3 administration in rats for 42 days led to spatial learning and memory impairment as assessed by MWM. AlCl3-treated rats showed a significant prolongation in time taken to jump onto the platform in both maze acquisition and retention phases compared to control rats. These results are in consistent with earlier experimental studies that demonstrated cognitive deficits caused by the chronic AlCl3 administration in rats (Qusti, 2017; Rather et al, 2018), and mice (Jangra et al, 2015; Kasbea et al, 2015). Cognitive decline after aluminum (Al3+) exposure may be caused by numerous Al3+ actions on the nerve cells. Exposure to Al3+ can result in a dramatic accumulation of Al3+ in the brain leading to a severe impairment in learning and memory abilities and in long term potentiation (LTP) in the hippocampus (Liang et al, 2012). This impairment is caused by Al3+ capacity to inhibit downstream effector mediators e.g. cyclic guanosine monophosphate (cGMP) participating in LTP and disrupt the glutamate-nitric oxide-cGMP pathway in the rat brain (Canales et al, 2001).

In contrast, co-administration of memantine or clopidogrel with AlCl3 for 42 days to rats significantly improved spatial learning and memory deficits as shown by a significant decline in the MWM test’s 1st and 2nd RLs compared to AlCl3-treated rats.

Previous studies also supported that memantine improved memory and cognition assessed by MWM test (Abdel-Aal et al, 2011; Ahmed et al, 2014). Memantine could prevent Al3+-induced neuronal toxicity and cognitive deficit by several mechanisms. Memantine unexpectedly is a more potent blocker when glutamate levels rise due to its low affinity and non-competitive antagonism for NMDA receptor, so causing memantine to favorably decrease pathological NMDA receptor stimulation without disrupting the physiological activity important for cognition (Lockrowa et al, 2011). Memantine also decreased elevated AChE enzyme activity (Ahmed et al, 2014; Al-Bishri et al, 2017). Moreover, memantine prevent cognitive deficits induced by neuroinflammation (Rosi et al, 2009) and enhanced cognitive functions in Aβ-induced AD in rats (Nyakas et al, 2010). In the current study, memantine significantly decreased hippocampal AChE activity, TNF-α and IL-1β concentrations, APP mRNA gene expression and Aβ deposition.

To our knowledge, this is the initial study to test clopidogrel neuroprotective influence on AlCl3-triggered AD in rats. Clopidogrel cognitive enhancing effect might be due to its ability to decrease AChE activity and hence improving cholinergic neurotransmission as shown in the current study. Other mechanisms for cognitive enhancement produced by clopidogrel might be due to its ameliorating effect on inflammation by significantly decreased hippocampal TNF-α, IL-1β levels or its lowering effect on APP mRNA gene expression and Aβ as shown in the current study. Several previous studies demonstrated an anti-inflammatory effect of clopidogrel in different animal models (Patel et al, 2012; Webster et al, 2013; Suh et al, 2016).

In the current study, AlCl3-treated group exhibited a significant elevation of AChE activity in the hippocampus as compared to control rats. Information about the AChE activity alteration in AD animal models are not constant, with some showing elevated, and others showing suppressed activity. These divergences may be caused by the variations in animal models and experimental methods, involving timing of sample taking for assessing activity (Xiao et al, 2011). In consistency with our results, previous studies reported increased AChE activity with AlCl3-treated rats (Lin...
Potential Neuroprotective Effect of Clopidogrel

Noura El Adle et al. 14

The increased AChE activity in AlCl3-treated rats might be caused by direct Al3+-induced neuronal toxicity. Prolonged Al3+ administration changes AChE kinetics and its elevated activity may be attributed to Al3+ ability to allosterically interact with the enzyme peripheral anionic site, causing modification of its secondary structure, thereby enhancing its activity (Gulya et al., 1990; Zatta et al, 1994). Another possible mechanism for increased AChE is due to IL-1β overproduction as shown in the current study that promotes the activity and expression of AChE via interaction of IL-1β with muscarinic acetylcholine receptors (AChRs) (Schliebs et al, 2006). Additional explanation might be due to Aβ deposition as shown in the current study. Aβ combines with nicotinic AChRs causing enhanced AChE activity (Arendt et al, 1984).

Contrarily, other studies reported that AlCl3 administration inhibited AChE activity compared to control groups (Lakshmi et al, 2014; Lakshmi et al, 2015; Taïr et al, 2016; Singla & Dhawan, 2017). The reduction in AChE activity may be attributed to Al3+ attachment to SH-groups of AChE catalytic active site, which ultimately have hindered the activity of enzyme in various chemical reactions (Singla & Dhawan, 2017).

Co-administration of memantine or clopidogrel with AlCl3 to rats results in significant decrease of hippocampal AChE activity compared to AlCl3-treated rats. Memantine had shown to decrease AChE activity in several studies (Ahmed et al, 2014; Al-Bishri et al, 2017). The decreased AChE activity with memantine might be due to ability of memantine to lower IL-1β concentration or APP mRNA gene expression and Aβ deposition as shown in the current study. This study is the first study to show clopidogrel inhibitory effect on AChE activity in AlCl3-induced AD model. Similarly, the decreased AChE activity with clopidogrel might be due to its ability to lower IL-1β concentration, APP mRNA gene expression and/or Aβ deposition as shown in the current study.

The current study’s results demonstrated that continuous AlCl3 administration in rats significantly elevated hippocampal TNF-α, IL-1β concentrations compared to control rats. These data are consistent with other studies in rats (Cao et al, 2016; Qusti, 2017; Rather et al, 2018; Ravi et al, 2018) and mice (Jangra et al, 2015; Kasbea et al, 2015). In humans, brains and plasma of AD patients showed elevated TNF-α concentrations (Chang et al, 2017). Similarly, IL-1β was elevated in both the brains (Cacabelos et al, 1994) and plasma of AD patients (Forlenza et al, 2009).

Aluminum is strongly implicated in neuroinflammation induction and inflammatory cytokine production (Cao et al, 2016). Al3+ can activate the glial cells and initiate the macrophages responsiveness (Campbell et al, 2002). Microglial stimulation by Al3+ leads to marked proinflammatory cytokine generation e.g. TNF-α, IL-1β, IL-6 (Cao et al, 2016). Moreover, Al3+ activates the transcription factor nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase/activator protein-1, and hypoxia inducible factor-1 (HIF-1), which are implicated in inflammation (Lukiw et al, 2005; Verstraeten et al, 2008). In addition, accumulation of Al3+ in the hippocampus causes abnormal deposition of Aβ (Wang et al, 2014) which induces microglial chemotaxis and provide a chronic stimulus to microglial cells contributing to the ongoing inflammatory process (Lue et al, 2001). Also, Aβ itself may act as an inflammation inducing factor leading to stimulation of several inflammatory components (Ghavami et al, 2014).

Additional underlying mechanism for increased hippocampal TNF-α and IL-1β concentrations by chronic AlCl3 administration is Al3+-induced excitotoxicity. Continued Al3+ administration was
shown to elevate brain glutamate concentration (Abdel-Zaher et al, 2017). Functional ionotropic glutamate receptors such as NMDA receptors in the microglia respond to glutamate release during synaptic activity or damage leading to inflammatory cytokine liberation such as TNF-\(\alpha\) and IL-1\(\beta\) (Domercq et al, 2013).

In contrast, the current study revealed that co-administration of memantine or clopidogrel with AlCl\(_3\) to rats resulted in significant decrease of hippocampal TNF-\(\alpha\), IL-1\(\beta\) concentrations compared to AlCl\(_3\)-treated rats. In addition, the decrease of hippocampal TNF-\(\alpha\), IL-1\(\alpha\) concentrations by clopidogrel was significant compared to its decrease by memantine.

Several studies using memantine reported similar results in AlCl\(_3\)-induced model (Alawdi et al, 2017) and in other AD animal models (Hemmati et al, 2013; Rai et al, 2013; Susmita et al, 2016; Budni et al, 2017). Memantine was also shown to possess anti-inflammatory effects in vitro in microglia and astrocytes (Wu et al, 2009) and in T cells (Kahlfub et al, 2014), and in vivo against morphine addictive behavior in rats (Chen et al, 2013), and lipopolysaccharide (LPS)-induced acute lung injury in mice (Ma et al, 2014). Also, it was shown that memantine possess anti-inflammatory effects in clinical trials of bipolar depression (Lee et al, 2014).

One explanation for decreased hippocampal TNF-\(\alpha\) and IL-1\(\beta\) concentrations by memantine administration is due to its ability to inhibit NF-\(\kappa\)B pathway as shown in several studies in AlCl\(_3\)-induced AD model (Ahmed et al, 2014; Alawdi et al, 2017). Another explanation is due to ability of memantine to activate cholinergic anti-inflammatory pathway by its inhibitory effect on AChE activity leading to increased acetylcholine (ACh) level. ACh is capable of suppression of the inflammatory cytokine liberation such as TNF-\(\alpha\) and IL-1\(\beta\) (Shytle et al, 2004). Also, decreased hippocampal TNF-\(\alpha\) and IL-1\(\beta\) concentrations by memantine might be due to its lowering effect on APP mRNA gene expression and A\(\beta\) as shown in the current study. Additional possible mechanism might be due to its ability to block NMDA receptor and halt Al\(^{3+}\)-induced excitotoxicity and glutamate release (Abdel-Zaher et al, 2017).

This is the initial study to demonstrate inflammation ameliorating influence of clopidogrel in AlCl\(_3\)-induced AD model. Several studies showed inflammation ameliorating influence of clopidogrel in global cerebral ischemia (Webster et al, 2013) and other models of LPS-induced inflammation (Hagiwara et al, 2011), atherosclerosis (Hadi et al, 2013), renal injury (Tu et al, 2008), inflammatory bowel disease (IBD) (Patel et al, 2012), and asthma (Suh et al, 2016). Molecular explanation for decreased hippocampal TNF-\(\alpha\) and IL-1\(\beta\) concentrations by clopidogrel administration could be due to its ability to inhibit NF-\(\kappa\)B pathway as shown in a previous study of bilateral common carotid artery occlusion (global cerebral ischemia) where clopidogrel treatment decreases NF-\(\kappa\)B expression in hippocampal CA1 neuron and improved its viability and decreased immune responses (Webster et al, 2013). Another explanation is due to its ability to activate cholinergic anti-inflammatory pathway by its inhibitory effect on AChE activity as shown in the current study leading to increased ACh level. Also, decreased hippocampal TNF-\(\alpha\) and IL-1\(\beta\) concentrations by clopidogrel might be due to its lowering effect on APP mRNA gene expression and A\(\beta\) as shown in the current study.

Additional explanation for decreased hippocampal TNF-\(\alpha\) and IL-1\(\beta\) concentrations by clopidogrel is due to its ability to block P\(_2\)Y\(_{12}\) receptors on the microglia leading to inhibition of microglial chemotaxis and consequently microglial phagocytosis. Chemokines and nucleotide adenosine tri-
phosphate (ATP) manage proper microglial migration to destructed region (Noda & Suzumura, 2012). Induction of apoptosis and necrosis by Al3+ was previously reported in rats and mice (Prakash & Sudhandiran, 2015; Said & Abd Rabo, 2017). Apoptosis and necrosis of neurons in AD result in release of ATP (Glass et al, 2010) which induces microglial migration (chemotaxis) through P2Y receptors, especially P2Y12 (Noda & Suzumura, 2012). P2Y12 receptor is solely present in microglia in the central nervous system, is not present in peripheral macrophages and so, is a reliable marker to differentiate inhabitant microglia from penetrated macrophages (Tronel et al, 2017). The initial chemotaxis of microglial cells serves as a precursor to subsequent microglial activation and functional responses such as phagocytosis; however, chemotactic responses are also ongoing and could contribute to neuronal degeneration in environments of chronic neuroinflammation in brain and in the progression of disease (McLarnon, 2012).

Also, a unique explanation for decreased hippocampal TNF-α and IL-1β concentrations by clopidogrel administration is due to its antiplatelet effect. A number of studies demonstrated that platelet activation is strongly linked to inflammation, and platelet activation can stimulate or exacerbate inflammation in vivo (Weyrich et al, 2003; Gawaz et al, 2005; Patel et al, 2012). Clopidogrel can suppress platelet activation by P2Y12 receptor blockade (Tu et al, 2008). Several studies showed that clopidogrel reduced inflammation by its antiplatelet effect in various animal models (Evangelista et al, 2005; Angiolillo et al, 2006; Tu et al, 2008; Patel et al, 2012).

The current study’s results demonstrated that continuous AlCl3 administration in rats significantly increased mRNA expression of APP gene compared to control rats. Earlier studies have demonstrated parallel results with increased mRNA expression (Khalaj et al, 2016; Yang et al, 2016) and protein expression of APP gene (Thenmozhi et al, 2016; Singla & Dohwan, 2017; Rather et al, 2018) in AlCl3-treated rats compared to control rats. Explanation for increased mRNA expression of APP gene is that the APP gene promoter region has numerous binding sites selective for NF-κB and HIF-1; two transcription factors linked to stress. They are implicated together in AD pathophysiology and pathology and are triggered by Al3+ (Lukiw et al, 2005). It was also reported that IL-1 enhance APP promoter transcriptional function (Lahiri and Nall, 1995). In addition, IL-1 significantly enhance APP mRNA translation (Rogers et al, 1999). Moreover, IL-1 (IL-1α and IL-1β) and TNF-α1 upregulate AβPP transcription and translation in the astrocytic cells via regulatory elements present in the AβPP promoter and in 5′-UTR, respectively (Lahiri et al, 2003).

Co-administration of memantine with AlCl3 in rats significantly decreased mRNA expression of APP gene compared to AlCl3-treated rats. Previous studies showed similar results with decreased protein expression of APP by memantine through inhibiting internal ribosomal entry site (Wu & Chen, 2009; Tasi et al, 2015) Other studies showed that memantine therapy decreased the membrane-bound APP entire cortical concentrations (45%–55%) in transgenic and non-transgenic mice (Unger et al, 2006). An explanation for the decreased APP mRNA gene expression by memantine is due to its ability to lower TNF-α and IL-1β concentrations as shown in the current study. Moreover, APP is produced by glutamate releasing nerve cells (Ouimet et al, 1994); so, NMDA receptor antagonism by memantine may affect the total APP formation (Unger et al, 2006). NF-κB enhanced APP promoter transcriptional function in glutamate-treated neurons (Grilli et al, 1996).

In the current study, concomitant clopidogrel
treatment with AlCl3 in rats significantly decreased mRNA expression of APP gene compared to AlCl3-treated rats. An explanation for decreased mRNA expression of APP gene by clopidogrel is due to its ability to lower TNF-α and IL-1β concentrations as shown in the current study.

All the current study’s results were confirmed by histopathological examination of the hippocampi from different rat groups stained with hematoxylin and eosin and Congo red stains. Examination of hippocampal tissue of AlCl3 treated rats stained with hematoxylin and eosin revealed amyloid plaques and degenerative changes compared to control rats. Similar earlier studies had shown similar results of amyloid plaques in AlCl3 model of AD (Lin et al, 2015; Ali et al, 2016; Babu et al, 2016; Singh et al, 2018). Congo red-stained hippocampal tissue examined both under light microscopy and polarized light confirmed the presence of amyloid plaques. These results are consistent with earlier studies (Balgoon et al, 2015; Kaur & Sodhi, 2015; Abdel-Salam et al, 2016).

Examination of hippocampal tissue of rats concomitantly treated with AlCl3 and memantine stained with hematoxylin and eosin revealed more or less normal hippocampal brain tissue when compared to AlCl3-treated rats. In addition, no amyloid plaques were detected. These results are in accordance with earlier studies that showed memantine lowering effect on amyloid plaques (Ahmed et al, 2014; Babu et al, 2016; Alawdi et al, 2017; Al-Bishri et al, 2017). Congo red stain of hippocampal tissue examined both under light microscopy and polarized light confirmed the absence of amyloid plaques. These results are in consistent with earlier studies utilized memantine in other AD models (Sil et al, 2016).

Examination of hippocampal tissue of rats concomitantly treated with AlCl3 and clopidogrel stained with hematoxylin and eosin stain or Congo red stain showed similar results to AlCl3 and memantine co-treated rats. To our knowledge, this study is the initial one to show clopidogrel potential neuroprotective influence on histopathology in an AlCl3-triggered AD model.

Histopathological changes in hippocampus in different rat groups may be explained by the biochemical and transcriptional gene expression changes which are previously discussed.

Conclusion

The current study highlighted that clopidogrel improves behavioral and biochemical function in AlCl3-treated rat brain, an effect that could be explained mainly by its anti-inflammatory properties. Clinical studies are required to evaluate the potential neuroprotective effect of clopidogrel in AD patients.

References

Potential Neuroprotective Effect of Clopidogrel Noura El Adle et al. 18

Potential Neuroprotective Effect of Clopidogrel Noura El Adle et al. 24

brain ischemia. PLOS ONE, 8: e70927.

الملخص العربي

تأثير الجذابية العصبية المحتمل لعقار الكلوريدوجريل على مريض الزهايمر المستنثوث بـكلوريد الألومينيوم في الجرذان

نورا العدل خلض، رحاب حمدي عاشور، مني يونس يوسف، محمد هشام ديا، فريدة هانم محمد البنا

قسم الفارماكولوجيا الكLINيكيكية - كلية الطب - جامعة المنصورة - مصر
قسم الباثولوجيى - كلية الطب - جامعة المنصورة - مصر
قسم الباثولوجيى الكLINيكيكية - كلية الطب - جامعة المنصورة - مصر

ثابتة مختصرة:

الخلفية والهدف: يعد مريض الزهايمر أحد الأمراض الشائعة سريعة التطور التي تتميز بالضمور العصبي. تساهم النباتات جزئية متنوعة مثل كـوين الألومينيوم، زيادة ضعف بروتينات النواة، انخفاض النقل العصبي الكولينيرجي، الإجهاد التاكسدي، والإجهاد العصبي في كيفية حدوث المرض. الغرض من هذه الدراسة هو تقييم تأثير الجذابية العصبية المحتمل لعقار الكلوريدوجريل في نموذج الزهايمر المستنثث بـكلوريد الألومينيوم في الجرذان.

الطرق: تم تقسيم أربعين من جرذان سراج داوى إلى نشترين بالغانغ غشى إلى أربع مجموعات (عشرة جرذان لكل منها): المجموعة الضابطة، مجموعة كلوريد الألومينيوم (100 مجم / كجم عن طريق الفم)، مجموعة كلوريد الألومينيوم والبيماتين (10 مجم / كجم عن طريق الفم)، ومجموعة كلوريد الألومينيوم والكلوريدوجريل (30 مجم / كجم عن طريق الفم). تم تناول كلوريد الألومينيوم والأدوية مرة واحدة يوميا لمدة 20 يوما. تم تقييم التعلم المكاني والذاكرة المكانية عن طريق اختبار مثابة موريس المائية. بعد القتل الرحيم، تم تغليف نشاط ن жизم أستيل كولين استيربراز وقياس ترکيات (1-1) TNF-α، IL-1β، كيميائييا في الـEهيبوكامباس في جميع المجموعات. وعلاوة على ذلك، تم تحليل التعبير الجيني جين في الـEهيبوكامباس لكل المجموعات من خلال تفاعل كمي وحقيقي لسلسلة البوليمراز. تم فحص نسيج الـEهيبوكامباس بـناثولوجيا في جميع المجموعات للتحقيق من وجود همتوتيوم الأبالوميلود باستخدام صبغة الهيماتوكسيلين والإيوسين وصبغة الكونغو.
النتائج: أدّى تناول الجرذان للكلوبيديوجريل مع كلوريد الألومنيوم لفترة 20 يوماً إلى تحسين ذو دلالة إحصائية في العجز المعرفي الناجم عن كلوريد الألومنيوم. علاوة على ذلك، أدّى تناول الجرذان للكلوبيديوجريل مع كلوريد الألومنيوم إلى انخفاض ذو دلالة إحصائية في نشاط إنزيم أستيل كولين استيراز وتركيزات TNF-α. IL-1β التعبير الجيني لجين APP والهيبوكماباس مقارنة بالجرذان التي تناولت كلوريد الألومنيوم فقط. أدّى تناول الجرذان للكلوبيديوجريل مع كلوريد الألومنيوم إلى انخفاض ذو دلالة إحصائية في تركيزات TNF-α. IL-1β في الهيبوكماباس مقارنة بالجرذان التي تناولت الهيمانتين مع كلوريد الألومنيوم. بالإضافة إلى ذلك، قلل تناول الجرذان للكلوبيديوجريل مع كلوريد الألومنيوم من ترسب لوحيات الأميلويد في أنسجة الهيبوكماباس المصبوبة بالهيماتوكسين واليايسين و الكونغو مقارنة بالجرذان التي تناولت كلوريد الألومنيوم فقط.

الخلاصة: أظهرت هذه النتائج أن عقارات كلوبيديوجريل تمكن من تحسين العجز المعرفي الناجم عن كلوريد الألومنيوم في الجرذان. ومن المحتمل أن تأثير الحماية العصبية لعقارات الكلوبيديوجريل في الزهايمر المستحث بتكلوريد الألومنيوم حدث من خلال تأثيره المضاد للالتهاب كما يتبين من قدرته على تقليل تركيزات TNF-α. IL-1β التعبير الجيني لجين APP في الهيبوكماباس أو من خلال تأثيره المثبط لنشاط إنزيم أستيل كولين استيراز و/أ تقليل التعبير الجيني لجين APP في الهيبوكماباس.